深度學(xué)習(xí)(DL, Deep Learning)是機(jī)器學(xué)習(xí)(ML, Machine Learning)領(lǐng)域中一個(gè)新的研究方向,它被引入機(jī)器學(xué)習(xí)使其更接近于最初的目標(biāo)——人工智能(AI, Artificial Intelligence)。
深度學(xué)習(xí)是學(xué)習(xí)樣本數(shù)據(jù)的內(nèi)在規(guī)律和表示層次,這些學(xué)習(xí)過(guò)程中獲得的信息對(duì)諸如文字,圖像和聲音等數(shù)據(jù)的解釋有很大的幫助。它的最終目標(biāo)是讓機(jī)器能夠像人一樣具有分析學(xué)習(xí)能力,能夠識(shí)別文字、圖像和聲音等數(shù)據(jù)。 深度學(xué)習(xí)是一個(gè)復(fù)雜的機(jī)器學(xué)習(xí)算法,在語(yǔ)音和圖像識(shí)別方面取得的效果,遠(yuǎn)遠(yuǎn)超過(guò)先前相關(guān)技術(shù)。 深度學(xué)習(xí)在搜索技術(shù),數(shù)據(jù)挖掘,機(jī)器學(xué)習(xí),機(jī)器翻譯,自然語(yǔ)言處理,多媒體學(xué)習(xí),語(yǔ)音,推薦和個(gè)性化技術(shù),以及其他相關(guān)領(lǐng)域都取得了很多成果。深度學(xué)習(xí)使機(jī)器模仿視聽(tīng)和思考等人類(lèi)的活動(dòng),解決了很多復(fù)雜的模式識(shí)別難題,使得人工智能相關(guān)技術(shù)取得了很大進(jìn)步。
▍深度學(xué)習(xí)是一類(lèi)模式分析方法的統(tǒng)稱(chēng),就具體研究?jī)?nèi)容而言,主要涉及三類(lèi)方法:
(1)基于卷積運(yùn)算的神經(jīng)網(wǎng)絡(luò)系統(tǒng),即卷積神經(jīng)網(wǎng)絡(luò)(CNN)。
(2)基于多層神經(jīng)元的自編碼神經(jīng)網(wǎng)絡(luò),包括自編碼( Auto encoder)以及近年來(lái)受到廣泛關(guān)注的稀疏編碼兩類(lèi)( Sparse Coding)。
(3)以多層自編碼神經(jīng)網(wǎng)絡(luò)的方式進(jìn)行預(yù)訓(xùn)練,進(jìn)而結(jié)合鑒別信息進(jìn)一步優(yōu)化神經(jīng)網(wǎng)絡(luò)權(quán)值的深度置信網(wǎng)絡(luò)(DBN)。